UPC. EETAC. Bachelor Degree. 2A. Digital Circuits and Systems (CSD). J. Jordana, F. J. Robert. Questions about the exam: Lecturer's office hours. Grades will be available on April 16.

Exam 1
April 9, 2018

Problem 1.

(5p)

1. Draw the symbol and an example of timing diagram for the combinational circuit with the truth table represented in Fig. 1. Use a Min_Pulse time constant of 1.5μ s and explain how long it takes to run a test bench simulation of the circuit. Indicate a possible application of this digital circuit.

B_{1}	B_{0}	A_{1}	A_{0}	R_{3}	R_{2}	R_{1}	R_{0}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

$==========$	
BBAA	RRRR
1010	3210
$===========$	
1111	$1 \ldots$
$1-10$	$.1 \ldots$
$101-$	$.1 \ldots$
-110	$\ldots 1$.
$1-01$	$\ldots 1$.
$10-1$	$\ldots 1$.
$011-$	$\ldots 1$.
$-1-1$	\ldots.

Fig. 1

The truth table of a combinational circuit and its SoP minimisation result in Minilog table output format.
2. Express $R_{2}=g\left(B_{1}, B_{0}, A_{1}, A_{0}\right)$ as a sum of minterms and $R_{1}=f\left(B_{1}, B_{0}, A_{1}, A_{0}\right)$ as a product of maxterms.
3. Draw the hierarchical schematic of a digital circuit that implements the outputs of the digital circuit using a DEC_4_16 and explain how many VHDL files the project contains.
4. Draw the hierarchical schematic of a digital circuit that implements the output R_{1} of the digital circuit using the method of multiplexers and a MUX_4. Explain how many VHDL files the project contains.
5. Generate a flat circuit using the SoP results from the Minilog table output format in Fig. 1. Write the VHDL statements corresponding to this structural architecture.
6. Implement the output R_{3} using only 2 -input NOR logic gates.
7. The circuit in section 5 above will be implemented using a classic technology ALS with the characteristics shown in Fig. 2. Deduce and explain the maximum speed of computing and the power consumption when powered at 5 V . Assume that the current consumption of a single logic gate is $I_{\mathrm{cc}}=\left(I_{\mathrm{cch}}+I_{\mathrm{ccL}}\right) / 2$.

PARAMETER	SN74ALS04B		UNIT	
	MIN	TYP		
V_{IK}		-1.2	V	
$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}-2$		V	
$\mathrm{~V}_{\mathrm{OL}}$		0.25	0.4	V
		0.35	0.5	
I_{I}			0.1	mA
I_{IH}			20	$\mu \mathrm{~A}$
I_{IL}		-0.1	mA	
$\mathrm{I}_{\mathrm{O}}{ }^{\#}$		-112	mA	
$\mathrm{I}_{\mathrm{CCH}}$		0.65	1.1	mA
$\mathrm{I}_{\mathrm{CCL}}$	2.9	4.2	mA	

	SN74ALS04B		UNIT	
		MIN		MAX

	MIN	MAX	
$t_{\text {PLH }}$	3	11	ns
t_{PH}	2	8	

1. Draw the symbol and the hiearchical internal schematics of a 7-bit two's complement adder/subtractor (Adder_Subtractor_7bit). How many VHDL files the project will include? Name all the VHDL source files and explain their function.
2. Determine the range of the operants \mathbf{A}, \mathbf{B} and the result \mathbf{R}. Explain how the overflow ($\mathbf{O V}$) flag works and how its circuit and truth table can be infered.
3. Perform the following operations in binary using the two's complement (2C) 7-bit adder/subtractor from previous section 1). Check the result and deduce the \mathbf{Z} and $\mathbf{O V}$ flags.

a) $(+39)_{10}$	+	$(1001010)_{2 C}$
b) $(0010110)_{2 C}$	-	$(-55)_{10}$
c) $(+18)_{10}$	+	$(1101110)_{2 C}$
d) $(-31)_{10}$	$\mathbf{-}$	$(0010110)_{2 C}$

4. Represent the previous operations in a timing diagram and translate it (only the stimulus section) to a VHDL test bench using a constant Min_Pulse $=10.5 \mu \mathrm{~s}$. Furthermore, calculate how long it takes to run a test bench for simulating not only the four previous operations, but all the possible input combinations.
5. Determine the maximum speed of operation of the 7-bit 2 C adder/subtractor if synthesised in an Altera MAX7128S CPLD device. The propagation delay of a logic gate in this technology is 2 ns . Justify your calculations.
6. Deduce the logic function and the corresponding circuit to add the new feature of equality (EQ) detection. This is a flag or indicator that goes high when the operands $\mathbf{A}=\mathbf{B}$.
