Exam 1 April 9, 2018

Problem 1. (5p)

Draw the symbol and an example of timing diagram for the combinational circuit with the truth table represented in Fig. 1. Use a *Min_Pulse* time constant of 1.5 μs and explain how long it takes to run a test bench simulation of the circuit. Indicate a possible application of this digital circuit. (1p)

B_1	B_0	A_1	A_0	R_3	R_2	R_1	R_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

=====	====
BBAA	RRRR
1010	3210
======	====
1111	1
1-10	.1
101-	.1
-110	1.
1-01	1.
10-1	1.
011-	1.
-1-1	1

Fig. 1

The truth table of a combinational circuit and its SoP minimisation result in Minilog table output format.

- **2.** Express $R_2 = g(B_1, B_0, A_1, A_0)$ as a sum of minterms and $R_1 = f(B_1, B_0, A_1, A_0)$ as a product of maxterms. (0.5p)
- 3. Draw the hierarchical schematic of a digital circuit that implements the outputs of the digital circuit using a DEC_4_16 and explain how many VHDL files the project contains. (1p)
- **4.** Draw the hierarchical schematic of a digital circuit that implements the output R_1 of the digital circuit using the method of multiplexers and a MUX_4. Explain how many VHDL files the project contains. (1p)
- **5.** Generate a flat circuit using the SoP results from the Minilog table output format in Fig. 1. Write the VHDL statements corresponding to this structural architecture. (0.5p)
- **6.** Implement the output R_3 using only 2-input NOR logic gates. (0.5p)
- 7. The circuit in section 5 above will be implemented using a classic technology ALS with the characteristics shown in Fig. 2. Deduce and explain the maximum speed of computing and the power consumption when powered at 5 V. Assume that the current consumption of a single logic gate is $I_{CC} = (I_{CCH} + I_{CCL})/2$. (0.5p)

PARAMETER	SN74ALS04B			UNIT
PARAMETER	MIN .	TYP	MAX	ONII
VIK			-1.2	V
Voн	V _{CC} -2			V
Voi		0.25	0.4	V
VoL		0.35	0.5	٧
lį			0.1	mA
I _{IH}			20	μΑ
IIL			-0.1	mA
IO#	-30		-112	mA
Іссн		0.65	1.1	mA
ICCL		2.9	4.2	mA

		SN74ALS04B		UNIT	
		MIN	NOM	MAX	ONII
Vcc	Supply voltage	4.5	5	5.5	V
ViH	High-level input voltage	2			V
VIL	Low-level input voltage			0.8	٧
ІОН	High-level output current			-0.4	mA
loL	Low-level output current			8	mA
TA	Operating free-air temperature	0		70	°C

	MIN	MAX	
tpLH	3	11	
tPHL	2	8	ns

Fig. 2
Technology
characteristic
for the logic
family ALSTTL

Problem 2. (5p)

1. Draw the symbol and the hiearchical internal schematics of a 7-bit two's complement adder/subtractor (Adder_Subtractor_7bit). How many VHDL files the project will include? Name all the VHDL source files and explain their function. (1p)

2. Determine the range of the operants **A**, **B** and the result **R**. Explain how the overflow (**OV**) flag works and how its circuit and truth table can be inferred.

(0.5p)

3. Perform the following operations in binary using the two's complement (2C) 7-bit adder/subtractor from previous section 1). Check the result and deduce the **Z** and **OV** flags. (1p)

a) (+39)₁₀ + (1001010)_{2C}

b) $(0010110)_{2C}$ **-** $(-55)_{10}$

c) (+18)₁₀ + (1101110)_{2C}

d) $(-31)_{10}$ **-** $(0010110)_{2c}$

4. Represent the previous operations in a timing diagram and translate it (only the stimulus section) to a VHDL test bench using a constant $Min_Pulse = 10.5 \, \mu s$. Furthermore, calculate how long it takes to run a test bench for simulating not only the four previous operations, but all the possible input combinations.

(0.5p)

5. Determine the maximum speed of operation of the 7-bit 2C adder/subtractor if synthesised in an Altera MAX7128S CPLD device. The propagation delay of a logic gate in this technology is 2 ns. Justify your calculations.

(1p)

6. Deduce the logic function and the corresponding circuit to add the new feature of equality (**EQ**) detection. This is a flag or indicator that goes high when the operands **A** = **B**. (1p)