UPC. EETAC. Bachelor Degree. 2A. Digital Circuits and Systems (CSD). F. J. Robert, J. Jordana. Questions about the exam: <u>Lecturers' office time.</u> Grades will be available on November 14.

Exam 1

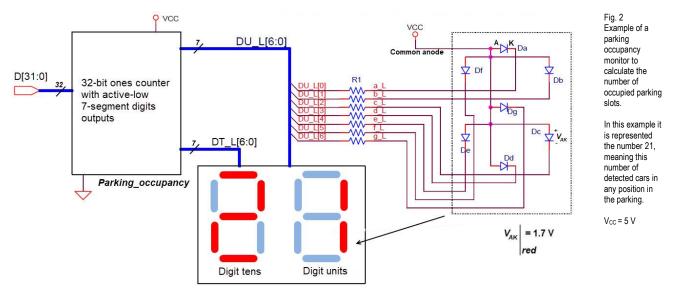
November 7, 2018

Problem 1.

Taking into account the truth table in Fig. 1 of a digital circuit named *Circuit_1*.

D	С	В	A	Y	w	D C D C C C C C C C C C C C C C
0	0	0	0	1	0	\longrightarrow C Y \longrightarrow truth table and minimisation
0	0	0	1	1	1	$ B \qquad \qquad W results. $
0	0	1	0	1	1	
0	0	1	1	1	0	Circuit_1
0	1	0	0	1	0	MINIMIZATION RESULT STATISTICS
0	1	0	1	1	1	======================================
0	1	1	0	1	1	MAXIMUM FANIN: 4 TOTAL LITERAL COUNT: 18
0	1	1	1	1	0	MAXIMUM PRODUCT TERM SIZE: 3
1	0	0	0	0	0	MAXIMUM OUTPUT FUNCTION SIZE: 3
1	0	0	1	1	0	DCBA YW
1	0	1	0	1	0	 0 1.
1	0	1	1	1	0	1- 1. 1 1.
1	1	0	0	0	0	0-01 .1
1	1	0	1	1	0	0-10 .1 111- .1
1	1	1	0	1	1	,
1	1	1	1	1	1	
				I		

Equations

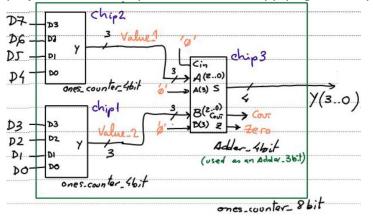

- a) Express $\mathbf{Y} = f(D, C, B, A)$ as a product of maxterms. Express $\mathbf{W} = f(D, C, B, A)$ as a sum of minterms. Expand the \mathbf{W} expression to calculate and verify its value when D = 1, C = 0, B = 1, A = 1.
- b) The minimisation of Y and W by minilog.exe gives the result in Fig. 1, express Y and W as SoP and verify their values when D = 1, C = 0, B = 1, A = 1. Draw the logic circuit equivalent to these minimised equations.

Planning

- c) Plan A, structural. Translate the equations **Y** and **W** obtained in b) into VHDL.
- d) Plan C2, hierarchical. Implement Y and W using the method of multiplexers and using MUX_2.
- e) Plan C2, hierarchical. Implement **Y** and **W** using the method of decoders. How many VHDL files are necessary in this project if the required decoder is build using *Dec_2_4* components?
- f) Plan B, behavioural. Draw the truth table as a schematic or a flow chart and translate it into a VHDL architecture.

Problem 2.

This project aims to represent in 7-segment displays the number of occupied parking slots. Each slot has installed an ultrasonic presence sensor which gives a '1' when occupied. Thus, the first idea here for planning the entity *Parking_occupancy* in Fig. 2 is to consider components such as a *Ones_counter_32bit* where for example an input vector such as $D = "1001\ 0011\ 1110\ 1111\ 1000\ 1111\ 1010\ 1110"$ will produce an output $K = (010101)_2 = (21)_{10}$; a *Converter_bin_BCD_6bit* where for example an input such as $K = (010101)_2$ will generate and output T = "0010", U = "0001"; and a pair of *HEX_7seg_decoder* to drive the 7-segment displays.



- a) Draw and explain the internal architecture of the parking occupancy circuit based on components and representing some examples of the components truth tables.
- b) The *HEX_7seg_decoder* has active-low outputs to drive a common-anode display and its technology is LS-TTL with the characteristics represented in the table. Calculate the value of the limiting resistor **R1** in the worst case scenario if each segment must be biased with 15 mA when lighting.

I				Limits	_		
I	Symbol	Parameter	Min	Тур	Max	Unit	
ſ	VIH	Input HIGH Voltage	2.0			V	Sy
ſ	VIL	Input LOW Voltage			0.8	V	
ſ	VOH	Output HIGH Voltage	2.7	3.5		V	
l	VOL	Output LOW Voltage		0.25	0.4	V	

Symbol		Min	Мах	Unit	
t _{PLH}		LOW-to-HIGH Level Output	4	15	ns
t _{PHL}	Propagation Delay Time	HIGH-to-LOW Level Output			

- c) The *Converter_bin_BCD_6bit* is used to translate 6-bit radix-2 numbers to 2 BCD digits. Assuming the circuit is based on equations PoS (plan A) and implemented in LS-TTL technology where each gate has propagation delays as indicated in the table, calculate the maximum speed of computing.
- d) Invent the architecture of the *ones_counter_32bit* as a hierarchy of components (plan C2). For instance, Fig. 3 represents the schematic of a *ones_counter_8bit*. How many VHDL files will include this project? Check that your circuit works applying some input vectors.

Fig. 3							
Example of building a ones_counter_8bit							
using smaller components like							
ones_counter_4bit and Adder_4bit.							

This is the truth table of a ones_counter_4bit								
D (З.	. 0	Υ(2	0)			
0	0	0	0	0	0	0		
					:			
0	0	1	1	0	1	0		
					:			
1	1	1	0	0	1	1		
	1				:			
1	1	1	1	1	0	0		