
alternative dosing wing a down counter blok

$T C 16=\&$ when $C O 2=\varnothing$ and $C E=1$
and $Q=" \ddot{6} 09$ "

* If $L D=\Phi^{\prime} \rightarrow$ the circuit Counters marls is a
fixed $\frac{1}{16}$ frequency divider

*If $\operatorname{Din}=$ " $\varnothing 1 \varnothing Q^{\prime \prime}$

$$
L D=T C 16
$$

The system goes counting down and when $Q=009 \rho \rightarrow T C 16=1$

$$
\begin{aligned}
& \rightarrow L D=1 \Rightarrow Q^{+}=\$ 1 \Phi 9 \text {, } \\
& \text { and so, it is a } \div 5 \text { fequancy } \\
& \text { divider }
\end{aligned}
$$

divider
\Rightarrow In this way, it is clown that

$$
\begin{aligned}
& \begin{array}{l}
\lambda_{i v}=D_{\text {in }} \Rightarrow \\
\text { grey divider }
\end{array} \\
& \begin{array}{l}
\text { fregrancy } \\
D_{i n}=0100 \rightarrow \div 5
\end{array} \\
& \begin{array}{l}
\text { Sin }=0100 \rightarrow \div 5 \\
\text { in }_{i}=0101 \rightarrow \div 6
\end{array} \\
& \partial_{i v}=1 i 11 \rightarrow \div 16
\end{aligned}
$$

and so, Dir $=0091 \rightarrow \div 2$
\rightarrow What about $\div 4$ when Dir $=9999 ?$

$$
T C=C L K
$$

*Final circus

When Dir (3.0) ="009P"

$$
\begin{aligned}
& \text { Let } 0 \rightarrow 1^{\prime} \rightarrow \\
& \text { select chi } \rightarrow T C=C L E
\end{aligned}
$$

When $\operatorname{Div}(3 . .0) \neq 0 \oplus \Phi \varphi$

$$
\operatorname{Let} 0 \rightarrow 0^{\prime}
$$

Select $\mathrm{ChO} \rightarrow$ TC $=$ Cl
\Rightarrow programmable divider france $\div 2$ to $\div 16$
and pet, ever another alternation way using an up count or ane replacing laic circuits (gats + MOX_-16) by arithmetic blacks

* For indarace: $\div 10$ to infer what algorithms to use

$T C 16=1$ when $C E=1$ and $\cup D-L=1$ and $Q=1111$ (Terminal con nt)

only 10 states of the 15 amitatle are wed
*Thus, the prod circuit must include
*This ariflyefic cituritis a

$$
A-B=A+(-B)=A+2 C(B)
$$

States $S_{11} \rightarrow S_{12} \rightarrow S_{13} \rightarrow S_{1, \rightarrow S_{18}}{ }^{3} D_{\text {in }}$

