UPC. EETAC. Bachelor degree. Second course 2A. Digital Circuits and Systems (CSD). Dr F. J. Robert. Grades will be available online on June $11^{\text {th }}$. Questions about the exam at office time.

Exam 2.

June 4 ${ }^{\text {th }}, 2021$
Problem 1.
Analyse the circuit represented in Fig. 1.

Fig. 1
Circuit based on 1-bit memory cells and logic gates.

1. Determine the output vector $\mathbf{K}[\mathbf{2} . . \mathbf{0}$] drawing a timing diagram considering enough CLK periods.
2. Write down the binary codes generated.
3. Explain how many VHDL files are necessary to develop and simulate the circuit using EDA tools.

periodic sequence $\rightarrow 7 \rightarrow 3 \rightarrow 0 \rightarrow 3 \rightarrow 7 \rightarrow 4 \rightarrow 7 \rightarrow \ldots$
\Rightarrow Fist determine sumplot values as whin wintinished values
Be aware that no f all the "states has the same duration
\rightarrow comptiationg clue to asynchronous inuits where CLK is another signal.
\rightarrow How to implement such cirvoit using a FSM?

Problem 2

(3.5p)

Design (specify and plan) the programmable rectangular wave generator represented in Fig. 2 using VHDL techniques and structural plan C2 for a target FPGA chip. The FSM is controlling a datapath based on a Counter_mod16. The 4bit radix-2 number NH establishes the number of CLK pulses where wave output (\mathbf{W}) is high, NL establishes the number of CLK pulses where W is low. Run output is high when running and low when idle.

a)
b)

c)

Fig. 3. State diagram proposed for Chip1 control unit (FSM) showing only states and transitions.

1. Invent the Chip CLK_Generator to obtain a 500 Hz square wave from the 24 MHz crystal oscillator.

\rightarrow This circuit needs 16 DFF $N_{1}=\frac{24 \mathrm{MH}}{1 \mathrm{kHz}}=24000$ to divide by 48 k and $\quad L_{15}$ bit
generate an grope wave chip 3

2. Calculate the frequency of the output rectangular wave W when $\mathrm{NH}=10$ and $\mathrm{NL}=4$.

1 clue period at Load_NH; NH at TimingNH 1 CLK period at Load-NL, NL at TiminsNL

$$
\begin{aligned}
& T_{N}=[(N H+1)+(N L+1)] T_{c L k} \\
& T_{w}=(11+5) 2 \mathrm{~ms} \Rightarrow 31.25 \mathrm{~Hz}
\end{aligned}
$$

\rightarrow This frequency and its duty cycle $\left[\right.$ Ton/ $\left.T_{N}\right]$ is programmable using NH and NL parameters.
3. Explain how many $D_{-} F F$ register will contain this project Wave_gen.

CLK- Yeverater $\rightarrow 16$ DEF
control unit $\rightarrow 5$ (coding in one-hot) or 3 coding in Counter-modl6 binary or Gray $(\rightarrow 25$ or 23
4. Draw the Chip internal FSM architecture connecting all the control unit inputs and outputs.

5. Draw the Chip CC2 truth table to determine all the outputs represented usually in parenthesis in Fig. 3.

6. Invent an alternative architecture for the datapath if Counter_mod16 is used as up counter with UD_L = ' 1 '.

1 are alsochitactures
$!-$ with simpler control signals not use ap $\rightarrow \downarrow^{\text {countorimedls }}$ 1 when at

- $T C 16=1$ when " 1111 " and $U D_{-} L=1$ and $C E=1$
- $\operatorname{Din}(3.0)$ wee loud when $L D=1$ is P

$$
\begin{aligned}
& P=A+B+1=A+\left(Y^{\prime}+1\right)=A+2 C(y) \\
& \text { is selectable: NH or NL }
\end{aligned}
$$

y is selectable: NH or NL
Example NH = 10 = i01.0"

$$
\Rightarrow T \subset \overline{16}=1
$$

Problem 3.
Design the PIC18F4520 microcontroller version of the Counter_mod16 using a plan Y adaptation.

Fig. 4
Counter_mod16 symbol and function table to be used in Problem 3 and Problem 2.

1. Draw the hardware schematic: input switches, outputs, reset (MCLR_L) and 12 MHz quartz crystal oscillator.

2. Draw the hardware-software diagram. Why the CLK for counting has to be connected to RBO/INT pin? What the interrupt service routine $\operatorname{ISR}()$ is used for?

Example hardwere/software diagram

3. Organise and name RAM variables for the project. Explain how to configure port pins and interrupts in init_system().

In loot pin direction

PORT

4. Explain how to poll the input values using bitwise operations in read_inputs().

5. Explain how to drive the six outputs using bitwise operations in write_outputs(). Example of writing outputs

6. Draw the truth table and flowchart for the output_logic().

var. $Q=$ var. corrent-stet; vor.TC $\rightarrow\left\{\begin{array}{l}2 \text { minterms } \\ 62 \text { maxtermy }\end{array}\right.$

7. What functions will be modified and how if we like to add an LCD to represent counter states?

8. How to configure and program the TMRO to replace external CLK if we require counting at 100 Hz ?

Fig. 5 TMRO architecture for 8 -bit mode.

$$
\text { every } 400 \text { intromit } N_{16} \cdot N_{2} \cdot N_{3}=30000
$$

or in 16-bit mode $\rightarrow N_{1}=1$

In this way TMRO replaces external INTO to Set vor_CLk_flag every 10 ms to allow counting at $100 \mathrm{~Hz}_{2}$
(Complementary questions for developing and testing the final project using microcontroller EDA tools.)
9. Draw the truth table and the flowchart for the state_logic().
10. Develop the project in Proteus and MPLABX, debug and verify. This is another P10 example.

- Phase \#1: Only up counting. Adapt hardware and software from the tutorial plan Y Counter mod1572.
- Phase \#2: Up and down. This is basically modify state_logic()
- Phase \#3: Parallel data inputs. This is again basically modifying state_logic()
- Phase \#4: Add an LCD to represent binary and decimal unsigned numbers.

