
UPC. EETAC. Bachelor Degree. 2A. Digital Circuits and Systems (CSD). F. J. Robert, J. Jordana. Grades will be available
by June 28. Questions about the exam: office time.
Exam 2. Submit your solution as a single PDF file at the Atenea platform June 25, 17:30 – 19:30

Project: Designing an asynchronous serial data receiver
A computer have to send data to a peripheral device like a teletext or a monitor using a simplex serial TX-
RX interface (Fig. 1). Simplex means that the transmission takes place in one direction, unidirectional, from
the computer to the terminal device. It is also possible for instance between a mouse (sender) and a
computer (receiver).

Fig. 1
Simplex
communication
interface.

Transmission parameters are as follows: Data length = 8 bit, parity bit = odd parity, stop bits = 1 bit,
transmission speed = 600 b/s.
The receiver is always idle waiting for a transmission frame as represented in Fig. 2. The line RX is kept at
‘1’ by the transmitter when it is not in use. When the transmitter has to send a byte, initialises the
transmission with a start bit that is always ‘0’, follows with the byte ordered from D7 .. D0, adds an odd
parity bit (OP) and finally one stop bit that is always ‘1’. For instance, if the data byte is the ASCII character
“K” = “01001011”, the transmission frame looks like this 11-bit sequence: “00100101111”.

Fig. 2 A transmission frame and a zoomed region at the transmission start. The receiver circuit
starts operating when a ‘0’ is detected at the RX input line.

https://www.upc.edu/
https://eetac.upc.edu/
https://digsys.upc.edu/
https://digsys.upc.edu/csd/contact.html

While receiving, if the start bit is not sampled to be ‘0’ or the stop bit is not sampled to be ‘1’, there is an
error. There is also an error indication when the 9-bit parity checking is even instead of odd. The error
signal is a pulse.
The symbol of the receiver subsystem is represented in Fig. 3. A pulse DA (data available) is generated once
the sequence has been decoded and saved at the Data_out vector.
The receiver works with a 24 MHz quartz crystal oscillator, and, as indicated in Fig. 2 the CLK_RX is 8 times
the transmitter frequency. In this manner, it is able to detect asynchronously and quickly the falling edge
from ‘1’ to ‘0’ that starts the transmission and then to centre the samplings at the half of each bit being
transmitted.

Fig. 3
Symbol

Fig. 4 gives you an idea of the components that may be included in the dedicated processor datapath.
Basically, counters and data and shift registers and also the 9-bit parity checker.

Fig. 4
Example of
some
components
that may be
used in the
design of the
receiver.

Fig. 5 gives you an idea of possible states for the control unit of the dedicated processor.

Fig. 5
Example of
feasible
states for the
control unit.
Naturally,
you can
invent your
own states
and FSM
organisation.

Questions (chapter II)
1. Invent an internal architecture for the CLK_Generator in Fig. 4 following a plan C2 based on T_FF and

freq_div_N components where N is an ajustable parameter. (1p)

2. Using a plan C2 strategy and the universal chip in Fig. 6 design the internal architectures of the

Counter_mod4 and the Counter_mod8 required in the project for delaying four CLK_RX, eight CLK_RX
and also for counting the eight data bits. (1p)

Fig. 6
Symbol of
the universal
4-bit
synchronous
binary
counter.

3. Infer the truth table of a 4-bit odd parity checker combinational circuit represented in Fig. 7 so that

when the input data has an odd number of ‘1’, the output OPC = ‘1’. Explain how several chips of the
same kind can be connected to produce the Odd_parity_checker_9bit required in the project. (1p)

Fig. 7
The idea and circuit
for checking the odd
parity of a
transmitted frame.

4. Invent the internal architecture of the Data_reg_8bit circuit using only components Counter_mod16

represented in Fig. 6. (0.5p)

5. Invent a datapath for the Receiver in Fig. 3 using components like in Fig. 4 or others. Explain your circuit
and justify your signals and connections. (1.5p)

6. Invent a state diagram for the Receiver’s control unit using states like in Fig. 5 or any other that you

may find necessary. Justify your signals, state transitions and loops. The state diagram also includes the
outputs (external outputs and control signals) at each state in parenthesis. (1p)

7. How many D_FF will include your Receiver design? Justify your answer. (0.5p)

Questions (chapter III)
We like to design the circuit in an alternative way using a µC PIC18F4520 as represented in Fig. 8 and C
language. Hardware tools are ICD3 in-circuit debugger-programmer and Proteus-VSM virtual laboratory.
Software tools are MPLABX integrated development environment and XC8 C compiler.

Fig. 8
PIC18F4520 40-Pin
PDIP.

8. Draw the hardware schematic including the reset circuit MCLR_L and an external quartz crystal
oscillator of 15.36 MHz1. Explain how to configure the inputs and outputs in the init_system(). Suppose
that at this initial design phase, an external CLK signal of 4.8 kHz is used as the RX_CLK. (0.5p)

9. Draw the hardware/software diagram indicating the required RAM variables and how the FSM is solved
in software. (1p)

10. Draw the truth table and its equivalent flowchart for the state_logic() function. (0.5p)
11. Draw the truth table and its equivalent flowchart for the output_logic() function. (05p)
12. If in the next design phase the external CLK is replaced by the internal peripheral Timer0 (represented

in Fig. 9) in 8-bit mode, calculate N1 (prescaler), N2 (TMR0L) and the configuration bits required to
generate a var_CLK_RX_flag interrupt every CLK_RX period (208.33 µs) to run the machine. (0.5p)

13. How to use the Timer0 to generate four (833.33 µs) and eight (1.66 ms) CLK_RX period delays? (0.5p)

Fig. 9 Architecture of the Timer0 peripheral.

1

 https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies

